Näytä suppeat kuvailutiedot

A Decision Support System for Diagnostics and Treatment Planning in Traumatic Brain Injury

Tenovuo O; Frantzen J; Lotjonen J; Menon D; Umer A; van Gils M; Katila A; Mattila J; Newcombe V; Koikkalainen J; Liedes H

dc.contributor.authorTenovuo O
dc.contributor.authorFrantzen J
dc.contributor.authorLotjonen J
dc.contributor.authorMenon D
dc.contributor.authorUmer A
dc.contributor.authorvan Gils M
dc.contributor.authorKatila A
dc.contributor.authorMattila J
dc.contributor.authorNewcombe V
dc.contributor.authorKoikkalainen J
dc.contributor.authorLiedes H
dc.date.accessioned2022-10-28T13:37:12Z
dc.date.available2022-10-28T13:37:12Z
dc.identifier.urihttps://www.utupub.fi/handle/10024/166245
dc.description.abstractTraumatic brain injury (TBI) occurs when an external force causes functional or structural alterations in the brain. Clinical characteristics of TBI vary greatly from patient to patient, and a large amount of data is gathered during various phases of clinical care in these patients. It is hard for clinicians to efficiently integrate and interpret all of these data and plan interventions in a timely manner. This paper describes the technical architecture and functionality of a web-based decision support system (DSS), which not only provides advanced support for visualizing complex TBI data but also predicts a possible outcome by using a state-of-the-art Disease State Index machine-learning algorithm. The DSS is developed by using a three-layered architecture and by employing modern programming principles, software design patterns, and using robust technologies (C#, ASP.NET MVC, HTML5, JavaScript, Entity Framework, etc.). The DSS is comprised of a patient overview module, a disease-state prediction module, and an imaging module. After deploying it on a web-server, the DSS was made available to two hospitals in U.K. and Finland. Afterwards, we conducted a validation study to evaluate its usability in clinical settings. Initial results of the study indicate that especially less experience clinicians may benefit from this type of decision support software tool.
dc.language.isoen
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
dc.titleA Decision Support System for Diagnostics and Treatment Planning in Traumatic Brain Injury
dc.identifier.urnURN:NBN:fi-fe2021042822565
dc.relation.volume23
dc.contributor.organizationfi=tyks, vsshp|en=tyks, vsshp|
dc.contributor.organizationfi=kliiniset neurotieteet|en=Clinical Neurosciences|
dc.contributor.organizationfi=anestesiologia ja tehohoito|en=Anaesthesiology, Intensive Care, Emergency Care and Pain Medicine|
dc.contributor.organization-code2607301
dc.contributor.organization-code2607314
dc.converis.publication-id41078794
dc.converis.urlhttps://research.utu.fi/converis/portal/Publication/41078794
dc.format.pagerange1268
dc.format.pagerange1261
dc.identifier.eissn2168-2208
dc.identifier.jour-issn2168-2194
dc.okm.affiliatedauthorTenovuo, Olli
dc.okm.affiliatedauthorKatila, Ari
dc.okm.affiliatedauthorDataimport, tyks, vsshp
dc.okm.discipline217 Medical engineeringen_GB
dc.okm.discipline217 Lääketieteen tekniikkafi_FI
dc.okm.internationalcopublicationinternational co-publication
dc.okm.internationalityInternational publication
dc.okm.typeJournal article
dc.relation.doi10.1109/JBHI.2018.2842717
dc.relation.ispartofjournalIEEE Journal of Biomedical and Health Informatics
dc.relation.issue3
dc.year.issued2019


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot