Näytä suppeat kuvailutiedot

On Unsupervised Training of Multi-Class Regularized Least-Squares Classifiers

Fabian Gieseke; Antti Airola; Tapio Pahikkala; Oliver Kramer

dc.contributor.authorFabian Gieseke
dc.contributor.authorAntti Airola
dc.contributor.authorTapio Pahikkala
dc.contributor.authorOliver Kramer
dc.date.accessioned2022-10-28T13:38:08Z
dc.date.available2022-10-28T13:38:08Z
dc.identifier.urihttps://www.utupub.fi/handle/10024/166353
dc.description.abstract<p> In this work we present the first efficient algorithm for unsupervised training of multi-class regularized least-squares classifiers. The approach is closely related to the unsupervised extension of the support vector machine classifier known as maximum margin clustering, which recently has received considerable attention, though mostly considering the binary classification case. We present a combinatorial search scheme that combines steepest descent strategies with powerful meta-heuristics for avoiding bad local optima. The regularized least-squares based formulation of the problem allows us to use matrix algebraic optimization enabling constant time checks for the intermediate candidate solutions during the search. Our experimental evaluation indicates the potential of the novel method and demonstrates its superior clustering performance over a variety of competing methods on real world datasets. Both time complexity analysis and experimental comparisons show that the method can scale well to practical sized problems.</p>
dc.titleOn Unsupervised Training of Multi-Class Regularized Least-Squares Classifiers
dc.identifier.urnURN:NBN:fi-fe2021042715401
dc.relation.volume29
dc.contributor.organizationfi=PÄÄT Tietojenkäsittelytiede|en=PÄÄT Computer Science|
dc.contributor.organization-code2606803
dc.converis.publication-id3887256
dc.converis.urlhttps://research.utu.fi/converis/portal/Publication/3887256
dc.format.pagerange90
dc.format.pagerange104
dc.identifier.jour-issn1000-9000
dc.okm.affiliatedauthorAirola, Antti
dc.okm.affiliatedauthorPahikkala, Tapio
dc.okm.discipline113 Computer and information sciencesen_GB
dc.okm.discipline113 Tietojenkäsittely ja informaatiotieteetfi_FI
dc.okm.internationalcopublicationinternational co-publication
dc.okm.internationalityInternational publication
dc.okm.typeJournal article
dc.relation.doi10.1007/s11390-014-1414-0
dc.relation.ispartofjournalJournal of Computer Science and Technology
dc.relation.issue1
dc.year.issued2014


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot