Näytä suppeat kuvailutiedot

Standard words and solutions of the word equation X_1^2 ··· X_n^2 = (X_1 ··· X_n)^2

Saarela Aleksi; Peltomäki Jarkko

dc.contributor.authorSaarela Aleksi
dc.contributor.authorPeltomäki Jarkko
dc.date.accessioned2022-10-28T13:40:24Z
dc.date.available2022-10-28T13:40:24Z
dc.identifier.urihttps://www.utupub.fi/handle/10024/166619
dc.description.abstract<p><br></p><p>We consider solutions of the word equation <em>X</em><sub>1</sub><sup>2</sup> ··· <em>X</em><sub>n</sub><sup>2</sup> = (<em>X</em><sub>1</sub> ··· <em>X</em><sub>n</sub>)<sup>2</sup> such that the squares <em>X</em><sub>i</sub><sup>2</sup> are minimal squares found in optimal squareful infinite words. We apply a method developed by the second author for studying word equations and prove that there are exactly two families of solutions: reversed standard words and words obtained from reversed standard words by a simple substitution scheme. A particular and remarkable consequence is that a word <i>w</i> is a standard word if and only if its reversal is a solution to the word equation and gcd(|w|, |w|<sub>1</sub>) = 1. This result can be interpreted as a yet another characterization for standard Sturmian words.<br><br>We apply our results to the symbolic square root map √· studied by the first author and M.A. Whiteland. We prove that if the language of a minimal subshift Ω contains infinitely many solutions to the word equation, then either Ω is Sturmian and √·-invariant or Ω is a so-called SL-subshift and not √·-invariant. This result is progress towards proving the conjecture that a minimal and √·-invariant subshift is necessarily Sturmian.</p>
dc.language.isoen
dc.publisherElsevier
dc.titleStandard words and solutions of the word equation X_1^2 ··· X_n^2 = (X_1 ··· X_n)^2
dc.identifier.urnURN:NBN:fi-fe2021042822858
dc.relation.volume178
dc.contributor.organizationfi=matematiikka|en=Mathematics|
dc.contributor.organization-code2606101
dc.converis.publication-id49631901
dc.converis.urlhttps://research.utu.fi/converis/portal/Publication/49631901
dc.identifier.eissn1096-0899
dc.identifier.jour-issn0097-3165
dc.okm.affiliatedauthorPeltomäki, Jarkko
dc.okm.affiliatedauthorSaarela, Aleksi
dc.okm.discipline111 Matematiikkafi_FI
dc.okm.discipline111 Mathematicsen_GB
dc.okm.internationalcopublicationnot an international co-publication
dc.okm.internationalityInternational publication
dc.okm.typeJournal article
dc.publisher.countryYhdysvallat (USA)fi_FI
dc.publisher.countryUnited Statesen_GB
dc.publisher.country-codeUS
dc.relation.articlenumber105340
dc.relation.doi10.1016/j.jcta.2020.105340
dc.relation.ispartofjournalJournal of Combinatorial Theory, Series A
dc.year.issued2021


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot