Näytä suppeat kuvailutiedot

Low-Rank Multi-Channel Features for Robust Visual Object Tracking

Fawad; Rahman M; Tenhunen H; Khan MJ; Amin Y

dc.contributor.authorFawad
dc.contributor.authorRahman M
dc.contributor.authorTenhunen H
dc.contributor.authorKhan MJ
dc.contributor.authorAmin Y
dc.date.accessioned2022-10-28T13:42:50Z
dc.date.available2022-10-28T13:42:50Z
dc.identifier.urihttps://www.utupub.fi/handle/10024/166913
dc.description.abstractKernel correlation filters (KCF) demonstrate significant potential in visual object tracking by employing robust descriptors. Proper selection of color and texture features can provide robustness against appearance variations. However, the use of multiple descriptors would lead to a considerable feature dimension. In this paper, we propose a novel low-rank descriptor, that provides better precision and success rate in comparison to state-of-the-art trackers. We accomplished this by concatenating the magnitude component of the Overlapped Multi-oriented Tri-scale Local Binary Pattern (OMTLBP), Robustness-Driven Hybrid Descriptor (RDHD), Histogram of Oriented Gradients (HoG), and Color Naming (CN) features. We reduced the rank of our proposed multi-channel feature to diminish the computational complexity. We formulated the Support Vector Machine (SVM) model by utilizing the circulant matrix of our proposed feature vector in the kernel correlation filter. The use of discrete Fourier transform in the iterative learning of SVM reduced the computational complexity of our proposed visual tracking algorithm. Extensive experimental results on Visual Tracker Benchmark dataset show better accuracy in comparison to other state-of-the-art trackers.
dc.language.isoen
dc.publisherMDPI
dc.titleLow-Rank Multi-Channel Features for Robust Visual Object Tracking
dc.identifier.urnURN:NBN:fi-fe2021042823111
dc.relation.volume11
dc.contributor.organizationfi=PÄÄT Tietoliikennetekniikka|en=PÄÄT Communication Systems|
dc.contributor.organization-code2606801
dc.converis.publication-id42620072
dc.converis.urlhttps://research.utu.fi/converis/portal/Publication/42620072
dc.identifier.jour-issn2073-8994
dc.okm.affiliatedauthorTenhunen, Hannu
dc.okm.discipline213 Sähkö-, automaatio- ja tietoliikennetekniikka, elektroniikkafi_FI
dc.okm.discipline213 Electronic, automation and communications engineering, electronicsen_GB
dc.okm.internationalcopublicationinternational co-publication
dc.okm.internationalityInternational publication
dc.okm.typeJournal article
dc.publisher.countrySveitsifi_FI
dc.publisher.countrySwitzerlanden_GB
dc.publisher.country-codeCH
dc.relation.articlenumberARTN 1155
dc.relation.doi10.3390/sym11091155
dc.relation.ispartofjournalSymmetry
dc.relation.issue9
dc.year.issued2019


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot