Näytä suppeat kuvailutiedot

ILoReg: a tool for high-resolution cell population identification from single-cell RNA-seq data

Elo Laura L; Smolander Johannes; Venäläinen Mikko S; Junttila Sini

dc.contributor.authorElo Laura L
dc.contributor.authorSmolander Johannes
dc.contributor.authorVenäläinen Mikko S
dc.contributor.authorJunttila Sini
dc.date.accessioned2022-10-28T14:03:30Z
dc.date.available2022-10-28T14:03:30Z
dc.identifier.urihttps://www.utupub.fi/handle/10024/169099
dc.description.abstractSingle-cell RNA-seq allows researchers to identify cell populations based on unsupervised clustering of the transcriptome. However, subpopulations can have only subtle transcriptomic differences and the high dimensionality of the data makes their identification challenging.\nWe introduce ILoReg, an R package implementing a new cell population identification method that improves identification of cell populations with subtle differences through a probabilistic feature extraction step that is applied before clustering and visualization. The feature extraction is performed using a novel machine learning algorithm, called iterative clustering projection (ICP), that uses logistic regression and clustering similarity comparison to iteratively cluster data. Remarkably, ICP also manages to integrate feature selection with the clustering through L1-regularization, enabling the identification of genes that are differentially expressed between cell populations. By combining solutions of multiple ICP runs into a single consensus solution, ILoReg creates a representation that enables investigating cell populations with a high resolution. In particular, we show that the visualization of ILoReg allows segregation of immune and pancreatic cell populations in a more pronounced manner compared with current state-of-the-art methods.\nILoReg is available as an R package at https://bioconductor.org/packages/ILoReg.\nSupplementary data are available at Supplementary Information and Supplementary Files 1 and 2.\nMOTIVATION\nRESULTS\nAVAILABILITY\nSUPPLEMENTARY INFORMATION
dc.language.isoen
dc.publisherOxford University Press
dc.titleILoReg: a tool for high-resolution cell population identification from single-cell RNA-seq data
dc.identifier.urnURN:NBN:fi-fe2021042824890
dc.relation.volume37
dc.contributor.organizationfi=Turun biotiedekeskus|en=Turku Bioscience Centre|
dc.contributor.organizationfi=biotiedekeskuksen yhteiset|en=Biotiedekeskuksen yhteiset|
dc.contributor.organization-code2609201
dc.contributor.organization-code2609200
dc.converis.publication-id51831913
dc.converis.urlhttps://research.utu.fi/converis/portal/Publication/51831913
dc.format.pagerange1114
dc.format.pagerange1107
dc.identifier.eissn1460-2059
dc.identifier.jour-issn1367-4803
dc.okm.affiliatedauthorElo, Laura
dc.okm.affiliatedauthorSmolander, Johannes
dc.okm.affiliatedauthorJunttila, Sini
dc.okm.affiliatedauthorVenäläinen, Mikko
dc.okm.discipline1184 Genetiikka, kehitysbiologia, fysiologiafi_FI
dc.okm.discipline1184 Genetics, developmental biology, physiologyen_GB
dc.okm.internationalcopublicationnot an international co-publication
dc.okm.internationalityInternational publication
dc.okm.typeJournal article
dc.publisher.countryUnited Kingdomen_GB
dc.publisher.countryBritanniafi_FI
dc.publisher.country-codeGB
dc.relation.doi10.1093/bioinformatics/btaa919
dc.relation.ispartofjournalBioinformatics
dc.relation.issue8
dc.year.issued2021


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot