Näytä suppeat kuvailutiedot

Spatial analysis of histology in 3D: quantification and visualization of organ and tumor level tissue environment

Kartasalo Kimmo; Visakorpi Tapio; Valkonen Masi; Latonen Leena; Valkonen Mira; Nykter Mira; Ruusuvuori Pekka

dc.contributor.authorKartasalo Kimmo
dc.contributor.authorVisakorpi Tapio
dc.contributor.authorValkonen Masi
dc.contributor.authorLatonen Leena
dc.contributor.authorValkonen Mira
dc.contributor.authorNykter Mira
dc.contributor.authorRuusuvuori Pekka
dc.date.accessioned2022-10-28T14:04:19Z
dc.date.available2022-10-28T14:04:19Z
dc.identifier.urihttps://www.utupub.fi/handle/10024/169184
dc.description.abstractHistological changes in tissue are of primary importance in pathological research and diagnosis. Automated histological analysis requires ability to computationally separate pathological alterations from normal tissue. Conventional histopathological assessments are performed from individual tissue sections, leading to the loss of three-dimensional context of the tissue. Yet, the tissue context and spatial determinants are critical in several pathologies, such as in understanding growth patterns of cancer in its local environment. Here, we develop computational methods for visualization and quantitative assessment of histopathological alterations in three dimensions. First, we reconstruct the 3D representation of the whole organ from serial sectioned tissue. Then, we proceed to analyze the histological characteristics and regions of interest in 3D. As our example cases, we use whole slide images representing hematoxylin-eosin stained whole mouse prostates in a Pten+/- mouse prostate tumor model. We show that quantitative assessment of tumor sizes, shapes, and separation between spatial locations within the organ enable characterizing and grouping tumors. Further, we show that 3D visualization of tissue with computationally quantified features provides an intuitive way to observe tissue pathology. Our results underline the heterogeneity in composition and cellular organization within individual tumors. As an example, we show how prostate tumors have nuclear density gradients indicating areas of tumor growth directions and reflecting varying pressure from the surrounding tissue. The methods presented here are applicable to any tissue and different types of pathologies. This work provides a proof-of-principle for gaining a comprehensive view from histology by studying it quantitatively in 3D.
dc.language.isoen
dc.publisherELSEVIER SCI LTD
dc.titleSpatial analysis of histology in 3D: quantification and visualization of organ and tumor level tissue environment
dc.identifier.urlhttps://doi.org/10.1016/j.heliyon.2022.e08762
dc.identifier.urnURN:NBN:fi-fe2022081154805
dc.relation.volume8
dc.contributor.organizationfi=biolääketieteen laitos, yhteiset|en=Institute of Biomedicine|
dc.contributor.organization-code2607100
dc.converis.publication-id174941466
dc.converis.urlhttps://research.utu.fi/converis/portal/Publication/174941466
dc.identifier.jour-issn2405-8440
dc.okm.affiliatedauthorRuusuvuori, Pekka
dc.okm.affiliatedauthorValkonen, Masi
dc.okm.discipline3111 Biolääketieteetfi_FI
dc.okm.discipline3111 Biomedicineen_GB
dc.okm.internationalcopublicationnot an international co-publication
dc.okm.internationalityInternational publication
dc.okm.typeJournal article
dc.publisher.countryUnited Kingdomen_GB
dc.publisher.countryBritanniafi_FI
dc.publisher.country-codeGB
dc.relation.articlenumbere08762
dc.relation.doi10.1016/j.heliyon.2022.e08762
dc.relation.ispartofjournalHeliyon
dc.relation.issue1
dc.year.issued2022


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot