Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Crowdsourced mapping of unexplored target space of kinase inhibitors

Aittokallio Tero; Allaway Robert J.; Capuzzi Stephen; Cichońska Anna; Dang Kristen; Drewry David H.; Guinney Justin; Isayev Olexandr; Jeon Minji; Kang Jaewoo; Kim Sunkyu; Koytiger Gregory; Lamb Andrew; Li Shuya; Mason Michael; Oprea Tudor I.; Park Sungjoon; Popova Mariya; Ravikumar Balaguru; Schlessinger Avner; Stolovitzky Gustavo; Tanoli Ziaurrehman; Wan Fangping; Wells Carrow I.; Wennerberg Krister; Willson Timothy M.; The IDG-DREAM Drug-Kinase Binding Prediction Challenge Consortium; Zeng Jianyang

Crowdsourced mapping of unexplored target space of kinase inhibitors

Aittokallio Tero
Allaway Robert J.
Capuzzi Stephen
Cichońska Anna
Dang Kristen
Drewry David H.
Guinney Justin
Isayev Olexandr
Jeon Minji
Kang Jaewoo
Kim Sunkyu
Koytiger Gregory
Lamb Andrew
Li Shuya
Mason Michael
Oprea Tudor I.
Park Sungjoon
Popova Mariya
Ravikumar Balaguru
Schlessinger Avner
Stolovitzky Gustavo
Tanoli Ziaurrehman
Wan Fangping
Wells Carrow I.
Wennerberg Krister
Willson Timothy M.; The IDG-DREAM Drug-Kinase Binding Prediction Challenge Consortium
Zeng Jianyang
Katso/Avaa
Publisher's PDF (4.403Mb)
Lataukset: 

NATURE RESEARCH
doi:10.1038/s41467-021-23165-1
URI
https://www.nature.com/articles/s41467-021-23165-1
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021093048929
Tiivistelmä

Despite decades of intensive search for compounds that modulate the activity of particular protein targets, a large proportion of the human kinome remains as yet undrugged. Effective approaches are therefore required to map the massive space of unexplored compound-kinase interactions for novel and potent activities. Here, we carry out a crowdsourced benchmarking of predictive algorithms for kinase inhibitor potencies across multiple kinase families tested on unpublished bioactivity data. We find the top-performing predictions are based on various models, including kernel learning, gradient boosting and deep learning, and their ensemble leads to a predictive accuracy exceeding that of single-dose kinase activity assays. We design experiments based on the model predictions and identify unexpected activities even for under-studied kinases, thereby accelerating experimental mapping efforts. The open-source prediction algorithms together with the bioactivities between 95 compounds and 295 kinases provide a resource for benchmarking prediction algorithms and for extending the druggable kinome. The IDG-DREAM Challenge carried out crowdsourced benchmarking of predictive algorithms for kinase inhibitor activities on unpublished data. This study provides a resource to compare emerging algorithms and prioritize new kinase activities to accelerate drug discovery and repurposing efforts.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste