Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Crowdsourced mapping of unexplored target space of kinase inhibitors

Cichońska Anna; Ravikumar Balaguru; Allaway Robert J.; Wan Fangping; Park Sungjoon; Isayev Olexandr; Li Shuya; Mason Michael; Lamb Andrew; Tanoli Ziaurrehman; Jeon Minji; Kim Sunkyu; Popova Mariya; Capuzzi Stephen; Zeng Jianyang; Dang Kristen; Koytiger Gregory; Kang Jaewoo; Wells Carrow I.; Willson Timothy M.; IDG-DREAM Drug-Kinase Binding Prediction Challenge Consortium; Oprea Tudor I.; Schlessinger Avner; Drewry David H.; Stolovitzky Gustavo; Wennerberg Krister; Guinney Justin; Aittokallio Tero

Crowdsourced mapping of unexplored target space of kinase inhibitors

Cichońska Anna
Ravikumar Balaguru
Allaway Robert J.
Wan Fangping
Park Sungjoon
Isayev Olexandr
Li Shuya
Mason Michael
Lamb Andrew
Tanoli Ziaurrehman
Jeon Minji
Kim Sunkyu
Popova Mariya
Capuzzi Stephen
Zeng Jianyang
Dang Kristen
Koytiger Gregory
Kang Jaewoo
Wells Carrow I.
Willson Timothy M.
IDG-DREAM Drug-Kinase Binding Prediction Challenge Consortium
Oprea Tudor I.
Schlessinger Avner
Drewry David H.
Stolovitzky Gustavo
Wennerberg Krister
Guinney Justin
Aittokallio Tero
Katso/Avaa
Publisher's PDF (4.403Mb)
Lataukset: 

NATURE RESEARCH
doi:10.1038/s41467-021-23165-1
URI
https://www.nature.com/articles/s41467-021-23165-1
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021093048929
Tiivistelmä

Despite decades of intensive search for compounds that modulate the activity of particular protein targets, a large proportion of the human kinome remains as yet undrugged. Effective approaches are therefore required to map the massive space of unexplored compound-kinase interactions for novel and potent activities. Here, we carry out a crowdsourced benchmarking of predictive algorithms for kinase inhibitor potencies across multiple kinase families tested on unpublished bioactivity data. We find the top-performing predictions are based on various models, including kernel learning, gradient boosting and deep learning, and their ensemble leads to a predictive accuracy exceeding that of single-dose kinase activity assays. We design experiments based on the model predictions and identify unexpected activities even for under-studied kinases, thereby accelerating experimental mapping efforts. The open-source prediction algorithms together with the bioactivities between 95 compounds and 295 kinases provide a resource for benchmarking prediction algorithms and for extending the druggable kinome. The IDG-DREAM Challenge carried out crowdsourced benchmarking of predictive algorithms for kinase inhibitor activities on unpublished data. This study provides a resource to compare emerging algorithms and prioritize new kinase activities to accelerate drug discovery and repurposing efforts.

Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste