Näytä suppeat kuvailutiedot

Sign changes of Hecke eigenvalues

Kaisa Matomäki; Maksym Radziwiłł

dc.contributor.authorKaisa Matomäki
dc.contributor.authorMaksym Radziwiłł
dc.date.accessioned2022-10-28T14:41:00Z
dc.date.available2022-10-28T14:41:00Z
dc.identifier.urihttps://www.utupub.fi/handle/10024/172753
dc.description.abstract<p> Let f be a holomorphic or Maass Hecke cusp form for the full modular group and write for the corresponding Hecke eigenvalues. We are interested in the signs of those eigenvalues. In the holomorphic case, we show that for some positive constant and every large enough x, the sequence has at least sign changes. Furthermore we show that half of non-zero are positive and half are negative. In the Maass case, it is not yet known that the coefficients are non-lacunary, but our method is robust enough to show that on the relative set of non-zero coefficients there is a positive proportion of sign changes. In both cases previous lower bounds for the number of sign changes were of the form x (delta) for some delta &lt; 1.</p>
dc.language.isoen
dc.publisherSPRINGER BASEL AG
dc.titleSign changes of Hecke eigenvalues
dc.identifier.urnURN:NBN:fi-fe2021042714993
dc.relation.volume25
dc.contributor.organizationfi=matematiikka|en=Mathematics|
dc.contributor.organization-code2606101
dc.converis.publication-id3047084
dc.converis.urlhttps://research.utu.fi/converis/portal/Publication/3047084
dc.format.pagerange1937
dc.format.pagerange1955
dc.identifier.jour-issn1016-443X
dc.okm.affiliatedauthorMatomäki, Kaisa
dc.okm.discipline111 Mathematicsen_GB
dc.okm.discipline111 Matematiikkafi_FI
dc.okm.internationalcopublicationinternational co-publication
dc.okm.internationalityInternational publication
dc.okm.typeJournal article
dc.publisher.countrySwitzerlanden_GB
dc.publisher.countrySveitsifi_FI
dc.publisher.country-codeCH
dc.relation.doi10.1007/s00039-015-0350-7
dc.relation.ispartofjournalGeometric And Functional Analysis
dc.relation.issue6
dc.year.issued2015


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot