Dimensions of learning mathematics via technology
Nygren, Eeva (2024-01-12)
Dimensions of learning mathematics via technology
Nygren, Eeva
(12.01.2024)
Turun yliopisto
Julkaisun pysyvä osoite on:
https://urn.fi/URN:ISBN:978-951-29-9573-8
https://urn.fi/URN:ISBN:978-951-29-9573-8
Tiivistelmä
Mathematics is a comprehensive, even esthetical experience, affecting a person intellectually, emotionally and physically. The purpose of this study is to determine and examine the dimensions of technology-enhanced mathematics learning.
The three learning domains cognitive, psychomotor and affective, ranging from uncomplicated to more complex learning outcomes, as defined by Bloom, have been used a great deal in mathematics pedagogy (Krathwohl, Bloom, & Masia, 1964). This study goes deeper and also examines motivation theory and learning theories when applying technology to the teaching of mathematics.
To get a broad picture of the impact of these dimensions on mathematics learning via technology, research was conducted in an array of contexts, including South Af-rica, Mozambique, Germany and Finland. The cross-cultural and cross-countries ap-proach was chosen to ensure wider generalizability of the research. The study invol-ved an action design research (ADR) approach of creating and evaluating artifacts; (i) a novel pedagogical INBECOM model for mathematics learning advocating both behavioristic and constructivist perspectives, and (ii) a newly designed and created story-based UFractions mobile game for learning of fractions incorporating tangible manipulatives. In particular, the affective domain of participants in the study was being studied throughout a ten-year research process from 2009 to 2019.
The INBECOM pedagogical model was tested by organizing a fraction course for 21 grade 10 students. The development and evaluation of the pedagogical INBECOM model gives a concrete example of how two learning approaches, constructivism and behaviourism, can be combined in teaching fractions. Furthermore, the results of the qualitative evaluation confirm the view that successful instructional practices have features that are supported by both constructivism and behaviorism.
The UFractions mobile game was evaluated with 305 grade 8 students and 12 teachers. Empirical tests indicate that combining concrete manipulatives and mobile phones is a meaningful way to learn the abstract concept of fractions, increasing active student participation. On the basis of the collected data, I initiated a taxonomy for the variety of play motivations in the UFractions game. The dynamics between game motivations and disturbance factors (DF) was analysed. Each motivation relates to a set of DFs typically affecting the player motivation negatively. By becoming aware of these relations, we are able to design more motivating educational games and give guidelines for game developers, users and educators.
To explore the affective learning experiences of the three groups of research participants, the qualitative data was derived from the interviews with researchers, teachers and students, as well as from learning diaries, feelings blogs, observations (311 documents) and quantitized (Saldaña, 2009). All the data was explored from the affective perspective, by labelling the feelings the participants experienced according to the affective levels of the Krathwohl et al. (1964) framework. I concluded that affective learning at all five levels was recognized among the three groups of participants. However, the results show that affective learning mostly took place at the receiving level, indicating that the participants received more than they responded, valued, organized or internalized. There was also a significant effect of research participants pertaining to receive; students’ affective learning occurred more at the receiving level than that of the teachers; and teachers’ affective learning emerged more at the value level.
Moreover, I define a dimension taxonomy of learning to be used as a framework in the design and implementation of technology-enhanced mathematics teaching and learning including the following three dimensions: (i) Domains of learning, (ii) Orientation of learning, and (iii) Motivation of learning. More precisely, the five domains of learning are cognitive, psychomotor, affective, interpersonal, and intra-personal. Considering orientation of learning, combining behaviorism and constructivism, would lead to more motivating and meaningful teaching and learning strategies. Furthermore, the level of technology integration, the level of students’ cognitive process, and the level of teachers’ knowledge, are intertwined. Motivational fac-tors are an essential part of learning, and it is important to acknowledge connections between motivations and disturbances, when using technology. ---
Matematiikka on moniulotteinen kokemus vaikuttaen henkilöön älyllisesti ja tunnetasolla samalla kytkeytyen myös fyysiseen ulottuvuuteen. Tämä tutkimus määrittää ja tarkastelee teknologia-avusteisen matematiikan oppimisen dimensioita.
Bloomin määrittämät kolme oppimisen osa-aluetta, kognitiivinen, psykomotorinen ja affektiivinen, jotka etenevät yksinkertaisista monimutkaisempiin oppimisen tasoihin, ovat olleet laajasti käytössä matematiikan pedagogiikassa (Krathwohl, Bloom & Masia, 1964). Tämä tutkimus laajentaa käsitystä oppimisesta tutkimalla motivaatio ja oppimisteorioita sekä niiden käytännön soveltamista matematiikan opetuksessa teknologian avulla.
Laajan ymmärryksen saavuttamiseksi siitä, miten nämä tekijät vaikuttavat matematiikan oppimiseen teknologian avulla, tutkimusta toteutettiin monissa eri ympäristöissä, mukaan lukien EteläAfrikka, Mosambik, Saksa ja Suomi. Tutkimuksessa huomioitiin kulttuuriset ja kansainväliset näkökulmat tulosten laajemman yleistettävyyden varmistamiseksi. Tutkimus hyödynsi suunnittelutoimintatutkimuksen (Action Design Research, ADR) menetelmää artefaktien luomiseksi ja evaluoimiseksi: (i) uudenlaista behavioristisia ja konstruktivistisia näkökulmia yhdistävää pedagogista INBECOM-mallia matematiikan oppimiseen, ja (ii) käsinkosketeltavia matematiikan apuvälineitä hyödyntävää UFractions-mobiilipeliä murtolukujen oppimiseen. Erityisesti osallistujien affektiivista oppimista tutkittiin kymmenen vuoden tutkimusprosessin aikana vuosina 2009–2019.
INBECOM-pedagogista mallia testattiin järjestämällä murtolukukurssi kansanopiston 10luokalle, jolla oli 21 oppilasta. Pedagogisen INBECOMmallin kehitys ja arviointi antavat konkreettisen esimerkin siitä, miten kahden oppimisteorian, konstruktivismin ja behaviorismin, voi yhdistää murtolukujen opetuksessa. Lisäksi laadullisen arvioinnin tulokset vahvistavat käsitystä siitä, että menestyksellisillä opetusmenetelmillä on piirteitä, jotka hyödyntävät sekä konstruktivistisia että behavioristisia periaatteita.
UFractions-mobiilipeli arvioitiin 305 8-luokan opiskelijan ja 12 opettajan avulla. Empiiriset testit osoittavat, että konkreettisten apuvälineiden ja matkapuhelimien yhdistäminen on mielekäs tapa oppia abstrakti murtoluvun käsite ja edistää opiskelijoiden aktiivista osallistumista. Kerätyn datan perusteella kehitettiin taksonomia UFractions-pelin pelimotivaatioista. Pelimotivaatioiden ja häiriötekijöiden (Disturbance Factors, DF) välistä dynamiikkaa analysoitiin. Jokainen motivaatio liittyy tiettyihin häiriötekijöihin, jotka yleensä vaikuttavat pelaajan motivaatioon negatiivisesti. Näiden suhteiden tiedostaminen auttaa suunnittelemaan motivoivampia opetuspelejä ja antaa suuntaviivoja pelikehittäjille, käyttäjille ja opettajille.
Affektiivisen oppimisen kokemusten tutkimiseksi tutkimukseen osallistuneiden kolmen ryhmän dataa tarkasteltiin laadullisen tutkimuksen keinoin; tutkijoiden, opettajien ja opiskelijoiden haastattelut, oppimispäiväkirjat, tunneblogi sekä havainnot (311 asiakirjaa) kvantifioitiin (Saldaña, 2009). Kaikki data analysoitiin affektiivisesta näkökulmasta merkitsemällä osallistujien kokemat tunteet Krathwohlin ym. (1964) viitekehyksen affektiivisten tasojen mukaisesti. Tutkimus osoitti, että affektiivista oppimista tunnistettiin kolmen osallistujaryhmän keskuudessa kaikilla viidellä tasolla. Tulokset osoittavat kuitenkin, että affektiivinen oppiminen tapahtui pääasiassa vastaanottotasolla, mikä viittaa siihen, että osallistujat vastaanottivat enemmän kuin he vastasivat, arvostivat, järjestivät tai sisäistivät. Myös osallistujaryhmien affektiivista oppimista koskevat tulokset vaihtelivat merkittävästi: opiskelijoiden affektiivinen oppiminen tapahtui enemmän matalammalla vastaanottotasolla kuin opettajien, ja opettajien affektiivinen oppiminen ilmeni enemmän korkeamman, arvotason oppimisena.
Lisäksi tutkimuksessa määritellään oppimisen ulottuvuuksien taksonomia, jota käytetään teknologia-avusteisen matematiikan opetuksen ja oppimisen suunnittelussa ja toteutuksessa. Tähän kuuluu seuraavat kolme ulottuvuutta: (i) Oppimisen osa-alueet, (ii) Oppimisen orientaatio ja (iii) Oppimisen motivaatio. Tarkemmin sanottuna viisi oppimisen osa-aluetta ovat kognitiivinen, psykomotorinen, affektiivinen, interpersonaalinen ja intrapersonaalinen. Yhdistämällä behavioristisia ja konstruktivistisia elementtejä saadaan innostavia ja merkityksellisiä opetus ja oppimisstrategioita. Motivaatiotekijät ovat olennainen osa oppimista, ja teknologiaa käytettäessä on tärkeää tunnistaa yhteydet motivaation ja erilaisten häiriötekijöiden välillä. Lisäksi teknologian integraation taso, opiskelijoiden kognitiivinen prosessi ja opettajien tietotaso ovat kietoutuneet toisiinsa.
The three learning domains cognitive, psychomotor and affective, ranging from uncomplicated to more complex learning outcomes, as defined by Bloom, have been used a great deal in mathematics pedagogy (Krathwohl, Bloom, & Masia, 1964). This study goes deeper and also examines motivation theory and learning theories when applying technology to the teaching of mathematics.
To get a broad picture of the impact of these dimensions on mathematics learning via technology, research was conducted in an array of contexts, including South Af-rica, Mozambique, Germany and Finland. The cross-cultural and cross-countries ap-proach was chosen to ensure wider generalizability of the research. The study invol-ved an action design research (ADR) approach of creating and evaluating artifacts; (i) a novel pedagogical INBECOM model for mathematics learning advocating both behavioristic and constructivist perspectives, and (ii) a newly designed and created story-based UFractions mobile game for learning of fractions incorporating tangible manipulatives. In particular, the affective domain of participants in the study was being studied throughout a ten-year research process from 2009 to 2019.
The INBECOM pedagogical model was tested by organizing a fraction course for 21 grade 10 students. The development and evaluation of the pedagogical INBECOM model gives a concrete example of how two learning approaches, constructivism and behaviourism, can be combined in teaching fractions. Furthermore, the results of the qualitative evaluation confirm the view that successful instructional practices have features that are supported by both constructivism and behaviorism.
The UFractions mobile game was evaluated with 305 grade 8 students and 12 teachers. Empirical tests indicate that combining concrete manipulatives and mobile phones is a meaningful way to learn the abstract concept of fractions, increasing active student participation. On the basis of the collected data, I initiated a taxonomy for the variety of play motivations in the UFractions game. The dynamics between game motivations and disturbance factors (DF) was analysed. Each motivation relates to a set of DFs typically affecting the player motivation negatively. By becoming aware of these relations, we are able to design more motivating educational games and give guidelines for game developers, users and educators.
To explore the affective learning experiences of the three groups of research participants, the qualitative data was derived from the interviews with researchers, teachers and students, as well as from learning diaries, feelings blogs, observations (311 documents) and quantitized (Saldaña, 2009). All the data was explored from the affective perspective, by labelling the feelings the participants experienced according to the affective levels of the Krathwohl et al. (1964) framework. I concluded that affective learning at all five levels was recognized among the three groups of participants. However, the results show that affective learning mostly took place at the receiving level, indicating that the participants received more than they responded, valued, organized or internalized. There was also a significant effect of research participants pertaining to receive; students’ affective learning occurred more at the receiving level than that of the teachers; and teachers’ affective learning emerged more at the value level.
Moreover, I define a dimension taxonomy of learning to be used as a framework in the design and implementation of technology-enhanced mathematics teaching and learning including the following three dimensions: (i) Domains of learning, (ii) Orientation of learning, and (iii) Motivation of learning. More precisely, the five domains of learning are cognitive, psychomotor, affective, interpersonal, and intra-personal. Considering orientation of learning, combining behaviorism and constructivism, would lead to more motivating and meaningful teaching and learning strategies. Furthermore, the level of technology integration, the level of students’ cognitive process, and the level of teachers’ knowledge, are intertwined. Motivational fac-tors are an essential part of learning, and it is important to acknowledge connections between motivations and disturbances, when using technology.
Matematiikka on moniulotteinen kokemus vaikuttaen henkilöön älyllisesti ja tunnetasolla samalla kytkeytyen myös fyysiseen ulottuvuuteen. Tämä tutkimus määrittää ja tarkastelee teknologia-avusteisen matematiikan oppimisen dimensioita.
Bloomin määrittämät kolme oppimisen osa-aluetta, kognitiivinen, psykomotorinen ja affektiivinen, jotka etenevät yksinkertaisista monimutkaisempiin oppimisen tasoihin, ovat olleet laajasti käytössä matematiikan pedagogiikassa (Krathwohl, Bloom & Masia, 1964). Tämä tutkimus laajentaa käsitystä oppimisesta tutkimalla motivaatio ja oppimisteorioita sekä niiden käytännön soveltamista matematiikan opetuksessa teknologian avulla.
Laajan ymmärryksen saavuttamiseksi siitä, miten nämä tekijät vaikuttavat matematiikan oppimiseen teknologian avulla, tutkimusta toteutettiin monissa eri ympäristöissä, mukaan lukien EteläAfrikka, Mosambik, Saksa ja Suomi. Tutkimuksessa huomioitiin kulttuuriset ja kansainväliset näkökulmat tulosten laajemman yleistettävyyden varmistamiseksi. Tutkimus hyödynsi suunnittelutoimintatutkimuksen (Action Design Research, ADR) menetelmää artefaktien luomiseksi ja evaluoimiseksi: (i) uudenlaista behavioristisia ja konstruktivistisia näkökulmia yhdistävää pedagogista INBECOM-mallia matematiikan oppimiseen, ja (ii) käsinkosketeltavia matematiikan apuvälineitä hyödyntävää UFractions-mobiilipeliä murtolukujen oppimiseen. Erityisesti osallistujien affektiivista oppimista tutkittiin kymmenen vuoden tutkimusprosessin aikana vuosina 2009–2019.
INBECOM-pedagogista mallia testattiin järjestämällä murtolukukurssi kansanopiston 10luokalle, jolla oli 21 oppilasta. Pedagogisen INBECOMmallin kehitys ja arviointi antavat konkreettisen esimerkin siitä, miten kahden oppimisteorian, konstruktivismin ja behaviorismin, voi yhdistää murtolukujen opetuksessa. Lisäksi laadullisen arvioinnin tulokset vahvistavat käsitystä siitä, että menestyksellisillä opetusmenetelmillä on piirteitä, jotka hyödyntävät sekä konstruktivistisia että behavioristisia periaatteita.
UFractions-mobiilipeli arvioitiin 305 8-luokan opiskelijan ja 12 opettajan avulla. Empiiriset testit osoittavat, että konkreettisten apuvälineiden ja matkapuhelimien yhdistäminen on mielekäs tapa oppia abstrakti murtoluvun käsite ja edistää opiskelijoiden aktiivista osallistumista. Kerätyn datan perusteella kehitettiin taksonomia UFractions-pelin pelimotivaatioista. Pelimotivaatioiden ja häiriötekijöiden (Disturbance Factors, DF) välistä dynamiikkaa analysoitiin. Jokainen motivaatio liittyy tiettyihin häiriötekijöihin, jotka yleensä vaikuttavat pelaajan motivaatioon negatiivisesti. Näiden suhteiden tiedostaminen auttaa suunnittelemaan motivoivampia opetuspelejä ja antaa suuntaviivoja pelikehittäjille, käyttäjille ja opettajille.
Affektiivisen oppimisen kokemusten tutkimiseksi tutkimukseen osallistuneiden kolmen ryhmän dataa tarkasteltiin laadullisen tutkimuksen keinoin; tutkijoiden, opettajien ja opiskelijoiden haastattelut, oppimispäiväkirjat, tunneblogi sekä havainnot (311 asiakirjaa) kvantifioitiin (Saldaña, 2009). Kaikki data analysoitiin affektiivisesta näkökulmasta merkitsemällä osallistujien kokemat tunteet Krathwohlin ym. (1964) viitekehyksen affektiivisten tasojen mukaisesti. Tutkimus osoitti, että affektiivista oppimista tunnistettiin kolmen osallistujaryhmän keskuudessa kaikilla viidellä tasolla. Tulokset osoittavat kuitenkin, että affektiivinen oppiminen tapahtui pääasiassa vastaanottotasolla, mikä viittaa siihen, että osallistujat vastaanottivat enemmän kuin he vastasivat, arvostivat, järjestivät tai sisäistivät. Myös osallistujaryhmien affektiivista oppimista koskevat tulokset vaihtelivat merkittävästi: opiskelijoiden affektiivinen oppiminen tapahtui enemmän matalammalla vastaanottotasolla kuin opettajien, ja opettajien affektiivinen oppiminen ilmeni enemmän korkeamman, arvotason oppimisena.
Lisäksi tutkimuksessa määritellään oppimisen ulottuvuuksien taksonomia, jota käytetään teknologia-avusteisen matematiikan opetuksen ja oppimisen suunnittelussa ja toteutuksessa. Tähän kuuluu seuraavat kolme ulottuvuutta: (i) Oppimisen osa-alueet, (ii) Oppimisen orientaatio ja (iii) Oppimisen motivaatio. Tarkemmin sanottuna viisi oppimisen osa-aluetta ovat kognitiivinen, psykomotorinen, affektiivinen, interpersonaalinen ja intrapersonaalinen. Yhdistämällä behavioristisia ja konstruktivistisia elementtejä saadaan innostavia ja merkityksellisiä opetus ja oppimisstrategioita. Motivaatiotekijät ovat olennainen osa oppimista, ja teknologiaa käytettäessä on tärkeää tunnistaa yhteydet motivaation ja erilaisten häiriötekijöiden välillä. Lisäksi teknologian integraation taso, opiskelijoiden kognitiivinen prosessi ja opettajien tietotaso ovat kietoutuneet toisiinsa.
Kokoelmat
- Väitöskirjat [2889]