Biomechanics of cancer cell motility
Isomursu, Aleksi (2024-04-12)
Biomechanics of cancer cell motility
Isomursu, Aleksi
(12.04.2024)
Turun yliopisto
Julkaisun pysyvä osoite on:
https://urn.fi/URN:ISBN:978-951-29-9673-5
https://urn.fi/URN:ISBN:978-951-29-9673-5
Tiivistelmä
Metastatic cancer is a devastating disease and an unmet clinical need. The local invasion and colonization of distant organs by cancer cells are both dependent on cell migration, a conserved cellular process that allows eukaryotic cells to traverse complex tissue microenvironments. This is achieved by dynamic regulation of the intracellular cytoskeleton and varying degrees of adhesion between cells and the extracellular milieu. Integrins are dimeric transmembrane receptors and the main cell adhesion molecules responsible for mediating interactions between cells and the extracellular matrix (ECM). They transmit cytoskeletal forces to the ECM, facilitating cell migration and ECM remodeling, and simultaneously inform the cell of the molecular composition and biomechanical properties of the local microenvironment. Malignant tumors are characterized by aberrant ECM architecture and other physical traits that differ markedly from healthy tissues. Tissue biomechanics can influence most cellular processes, including migration, but many of the underlying mechanisms are still inadequately understood.
This thesis provides new insights into the direct and indirect mechanisms that contribute to the biomechanical regulation of cancer cell motility. New tools for preparing cell culture substrates with stiffness gradients or dynamic micropatterns were established and used to investigate mechanically directed cell migration, cell polarization in response to local ECM geometry, and mechanosensitivity of ECM-remodeling adhesions. We found that the growth of fibrillar adhesions (FB), integrin adhesion complexes (IAC) responsible for fibronectin fibrillogenesis, is directly responsive to substrate stiffness. Further, we observed for the first time that human glioblastoma cells can migrate preferentially toward more compliant environments. This behavior, and the conventional positive durotaxis in other adherent cells, was explained by the molecular clutch model of cell adhesion. Finally, we found that cell front-rear polarization on anisotropic micropatterns is dependent on the biochemical composition of the substrate, impacting migration when the cells are released on fibronectin. Taken together, the results presented here improve our understanding of the different biomechanical cues that regulate and guide the movement of human cells. They also provide technological advancements for studying various aspects of cancer mechanobiology. Syöpäsolujen liikkeen biomekaniikka
Metastaattinen syöpä on tappava tauti, ja siihen käytettävissä olevat hoitokeinot ovat edelleen rajalliset. Syöpäsolujen paikallinen leviäminen ja etäpesäkkeiden lähettäminen terveisiin kudoksiin ovat molemmat riippuvaisia solumigraatiosta, solujen kyvystä liikkua erilaisissa monimutkaisissa mikroympäristöissä. Solujen liikettä edistävät sekä solunsisäisen tukirangan dynaaminen säätely että solujen tarttuminen toisiin soluihin ja ympäröivään soluväliaineeseen. Integriinit ovat dimeerisiä solukalvoreseptoreja, ja ne ovat päävastuussa solujen ja soluväliaineen välisistä suorista vuorovaikutuksista. Reseptorit välittävät solun tukirangan tuottamia voimia soluväliaineeseen, mikä edistää solujen liikkumista ja soluväliaineen muokkausta. Samalla solut saavat tietoa paikallisen mikroympäristön biokemiallisista ja mekaanisista ominaisuuksista. Pahanlaatuisten kasvaimien sekä terveiden kudosten fysikaaliset ominaisuudet, esimerkiksi soluväliaineen rakenne, poikkeavat usein huomattavasti toisistaan. Kudosten biomekaniikka puolestaan säätelee useimpia biologisia prosesseja, muun muassa solumigraatiota, mutta monet tähän liittyvistä molekyylitason mekanismeista tunnetaan vielä verrattain huonosti.
Tämä väitöskirja tarjoaa lisätietoa syöpäsolujen liikkeen biomekaaniseen säätelyyn liittyvistä suorista ja epäsuorista mekanismeista. Tutkimuksessa kehitettiin uusia tekniikoita erilaisten jäykkyysgradientteja tai dynaamisia mikrokuvioita sisältävien soluviljelyalustojen tuottamiseksi. Näitä menetelmiä käytettiin mekaanisesti ohjatun solumigraation, solujen polarisaation ja soluväliainetta muokkaavien adheesioiden tutkimiseen. Havaitsimme, että soluväliaineen muokkaamiseen osallistuvien fibrillaaristen adheesioiden kasvu on riippuvainen solun kasvuympäristön jäykkyydestä. Tulokset osoittavat myös, että tietyt ihmisen glioblastoomasolut voivat liikkua jäykistä ympäristöistä pehmeämpiä kohden. Tämä ilmiö sekä tavanomaisempi positiivinen durotaksis, solujen liike pehmeistä jäykkiin ympäristöihin, selittyvät molemmat niin sanotulla molekyylikytkinmallilla. Lopuksi havaitsimme, että solujen etu-takasuuntainen polarisaatio epäsymmetrisillä mikrokuvioilla on riippuvainen mikrokuvioiden biokemiallisesta koostumuksesta, mikä vaikuttaa myös solujen myöhempään migraatioon. Tulokset tarjoavat tärkeää lisätietoa solumigraation biomekaanikasta. Lisäksi uudet menetelmät soveltuvat hyvin myös muiden syövän mekanobiologiaan liittyvien mekanismien tutkimiseen.
This thesis provides new insights into the direct and indirect mechanisms that contribute to the biomechanical regulation of cancer cell motility. New tools for preparing cell culture substrates with stiffness gradients or dynamic micropatterns were established and used to investigate mechanically directed cell migration, cell polarization in response to local ECM geometry, and mechanosensitivity of ECM-remodeling adhesions. We found that the growth of fibrillar adhesions (FB), integrin adhesion complexes (IAC) responsible for fibronectin fibrillogenesis, is directly responsive to substrate stiffness. Further, we observed for the first time that human glioblastoma cells can migrate preferentially toward more compliant environments. This behavior, and the conventional positive durotaxis in other adherent cells, was explained by the molecular clutch model of cell adhesion. Finally, we found that cell front-rear polarization on anisotropic micropatterns is dependent on the biochemical composition of the substrate, impacting migration when the cells are released on fibronectin. Taken together, the results presented here improve our understanding of the different biomechanical cues that regulate and guide the movement of human cells. They also provide technological advancements for studying various aspects of cancer mechanobiology.
Metastaattinen syöpä on tappava tauti, ja siihen käytettävissä olevat hoitokeinot ovat edelleen rajalliset. Syöpäsolujen paikallinen leviäminen ja etäpesäkkeiden lähettäminen terveisiin kudoksiin ovat molemmat riippuvaisia solumigraatiosta, solujen kyvystä liikkua erilaisissa monimutkaisissa mikroympäristöissä. Solujen liikettä edistävät sekä solunsisäisen tukirangan dynaaminen säätely että solujen tarttuminen toisiin soluihin ja ympäröivään soluväliaineeseen. Integriinit ovat dimeerisiä solukalvoreseptoreja, ja ne ovat päävastuussa solujen ja soluväliaineen välisistä suorista vuorovaikutuksista. Reseptorit välittävät solun tukirangan tuottamia voimia soluväliaineeseen, mikä edistää solujen liikkumista ja soluväliaineen muokkausta. Samalla solut saavat tietoa paikallisen mikroympäristön biokemiallisista ja mekaanisista ominaisuuksista. Pahanlaatuisten kasvaimien sekä terveiden kudosten fysikaaliset ominaisuudet, esimerkiksi soluväliaineen rakenne, poikkeavat usein huomattavasti toisistaan. Kudosten biomekaniikka puolestaan säätelee useimpia biologisia prosesseja, muun muassa solumigraatiota, mutta monet tähän liittyvistä molekyylitason mekanismeista tunnetaan vielä verrattain huonosti.
Tämä väitöskirja tarjoaa lisätietoa syöpäsolujen liikkeen biomekaaniseen säätelyyn liittyvistä suorista ja epäsuorista mekanismeista. Tutkimuksessa kehitettiin uusia tekniikoita erilaisten jäykkyysgradientteja tai dynaamisia mikrokuvioita sisältävien soluviljelyalustojen tuottamiseksi. Näitä menetelmiä käytettiin mekaanisesti ohjatun solumigraation, solujen polarisaation ja soluväliainetta muokkaavien adheesioiden tutkimiseen. Havaitsimme, että soluväliaineen muokkaamiseen osallistuvien fibrillaaristen adheesioiden kasvu on riippuvainen solun kasvuympäristön jäykkyydestä. Tulokset osoittavat myös, että tietyt ihmisen glioblastoomasolut voivat liikkua jäykistä ympäristöistä pehmeämpiä kohden. Tämä ilmiö sekä tavanomaisempi positiivinen durotaksis, solujen liike pehmeistä jäykkiin ympäristöihin, selittyvät molemmat niin sanotulla molekyylikytkinmallilla. Lopuksi havaitsimme, että solujen etu-takasuuntainen polarisaatio epäsymmetrisillä mikrokuvioilla on riippuvainen mikrokuvioiden biokemiallisesta koostumuksesta, mikä vaikuttaa myös solujen myöhempään migraatioon. Tulokset tarjoavat tärkeää lisätietoa solumigraation biomekaanikasta. Lisäksi uudet menetelmät soveltuvat hyvin myös muiden syövän mekanobiologiaan liittyvien mekanismien tutkimiseen.
Kokoelmat
- Väitöskirjat [2858]