Näytä suppeat kuvailutiedot

Enhancing the Reliability of LiDAR Point Cloud Sampling : A Colorization and Super-Resolution Approach Based on LiDAR-Generated Images

Du, Honghao (2024-11-17)

dc.contributor.authorDu, Honghao
dc.date.accessioned2024-12-02T22:03:25Z
dc.date.available2024-12-02T22:03:25Z
dc.date.issued2024-11-17
dc.identifier.urihttps://www.utupub.fi/handle/10024/179386
dc.description.abstractIn recent years, Light Detection and Ranging (LiDAR) technology, a critical sensor in robotics and autonomous systems, has seen significant advancements. These improvements include enhanced resolution of point clouds and the capability to provide 360°, low-resolution images. These images encode various data such as depth, reflectivity, and near-infrared light within the pixels. However, an excessive density of points and conventional point cloud sampling can be counterproductive, particularly in applications such as LiDAR odometry, where misleading points may induce drift errors and geometry information is degraded. Currently, extensive research efforts are being directed towards leveraging LiDAR-generated images to improve situational awareness. This paper presents a comprehensive review of current deep learning (DL) techniques, including colorization and super-resolution, which are traditionally utilized in conventional computer vision tasks. These techniques are applied to LiDAR-generated images and are analyzed qualitatively. Building on this analysis, we have developed a novel approach that selectively integrates the most effective methods with LiDAR imagery to sample reliable points from the LiDAR point cloud. This approach aims to not only improve the accuracy of point cloud registration but avoid mismatching caused by lacking of geometry information, thereby augmenting the utility and precision of LiDAR systems in practical applications. In our evaluation, the proposed approach demonstrates superior performance compared to our previous work, achieving lower translation and rotation errors with a reduced number of points.
dc.format.extent66
dc.language.isoeng
dc.rightsfi=Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.|en=This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.|
dc.subjectLiDAR, Odometry, Super-Resolution, Colorization, LiDAR-as-a-camera, Point Cloud Sampling
dc.titleEnhancing the Reliability of LiDAR Point Cloud Sampling : A Colorization and Super-Resolution Approach Based on LiDAR-Generated Images
dc.type.ontasotfi=Diplomityö|en=Master's thesis|
dc.rights.accessrightsavoin
dc.identifier.urnURN:NBN:fi-fe2024120298732
dc.contributor.facultyfi=Teknillinen tiedekunta|en=Faculty of Technology|
dc.contributor.studysubjectfi=Tietotekniikka|en=Information and Communication Technology|
dc.contributor.departmentfi=Tietotekniikan laitos|en=Department of Computing|


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot