Molecular Evolution of Metazoan Hypoxia-inducing Factors
Rytkönen, Kalle T. (2010-08-27)
Molecular Evolution of Metazoan Hypoxia-inducing Factors
Rytkönen, Kalle T.
(27.08.2010)
Turun yliopisto Annales Universitatis Turkuensis A II 253
Julkaisun pysyvä osoite on:
https://urn.fi/URN:ISBN:978-951-29-4341-8
https://urn.fi/URN:ISBN:978-951-29-4341-8
Kuvaus
Siirretty Doriasta
Tiivistelmä
Most metazoans rely on aerobic energy production, which is dependent on adequate oxygen supply. In the case of reduced oxygen supply (hypoxia), the most profound changes in gene expression are mediated by transcription factors named hypoxia-inducible factors (HIF alpha). These proteins are post-translationally regulated by prolyl-4-hydroxylase (PHD) enzymes that are direct “sensors” of cellular oxygen levels. This thesis examines the molecular evolution of metazoan HIF systems. In early metazoans the HIF system emerged from pre-existing PHD oxygen sensors and early bHLH-PAS transcription factors. In invertebrates our analysis revealed an unexpected diversity of PHD genes and HIF alpha sequence characteristics.
An early branching vertebrate, the epaulette shark (Hemiscyllium ocellatum) was chosen for sequencing and hypoxia preconditioning studies of HIF alpha and PHD genes. As no quantitative PCR reference genes were available, this thesis includes the first study of reference genes in cartilaginous fish species. Applying multiple statistical analysis we also discoveredthat commonly used reference gene software may perform poorly with some data sets. Novel reference genes allowed accurate measurements of the mRNAlevels of the studied target genes.
Cartilaginous fishes have three genomic duplicates of both HIF alpha and PHD genes like mammals and teleost fishes. Combining functional divergence and selection analyses it was possible to describe how sequence changes in both HIF alpha and PHD duplicates may have contributed to the differential oxygen sensitivityof HIF alphas. Additionally, novel teleost HIF-1 alpha sequences were produced and used to reveal the molecular evolution of HIF-1 alpha in this lineage rich with hypoxia tolerant species.
An early branching vertebrate, the epaulette shark (Hemiscyllium ocellatum) was chosen for sequencing and hypoxia preconditioning studies of HIF alpha and PHD genes. As no quantitative PCR reference genes were available, this thesis includes the first study of reference genes in cartilaginous fish species. Applying multiple statistical analysis we also discoveredthat commonly used reference gene software may perform poorly with some data sets. Novel reference genes allowed accurate measurements of the mRNAlevels of the studied target genes.
Cartilaginous fishes have three genomic duplicates of both HIF alpha and PHD genes like mammals and teleost fishes. Combining functional divergence and selection analyses it was possible to describe how sequence changes in both HIF alpha and PHD duplicates may have contributed to the differential oxygen sensitivityof HIF alphas. Additionally, novel teleost HIF-1 alpha sequences were produced and used to reveal the molecular evolution of HIF-1 alpha in this lineage rich with hypoxia tolerant species.
Kokoelmat
- Väitöskirjat [2858]