Clustering in large data sets with the limited memory bundle method
Sona Taheri; Adil M. Bagirov; Napsu Karmitsa
Clustering in large data sets with the limited memory bundle method
Sona Taheri
Adil M. Bagirov
Napsu Karmitsa
ELSEVIER SCI LTD
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021042719681
https://urn.fi/URN:NBN:fi-fe2021042719681
Tiivistelmä
The aim of this paper is to design an algorithm based on nonsmooth optimization techniques to solve the minimum sum-of-squares clustering problems in very large data sets. First, the clustering problem is formulated as a nonsmooth optimization problem. Then the limited memory bundle method [Haarala et al., 2007] is modified and combined with an incremental approach to design a new clustering algorithm. The algorithm is evaluated using real world data sets with both the large number of attributes and the large number of data points. It is also compared with some other optimization based clustering algorithms. The numerical results demonstrate the efficiency of the proposed algorithm for clustering in very large data sets.
Kokoelmat
- Rinnakkaistallenteet [19207]