Näytä suppeat kuvailutiedot

Clustering in large data sets with the limited memory bundle method

Sona Taheri; Adil M. Bagirov; Napsu Karmitsa

dc.contributor.authorSona Taheri
dc.contributor.authorAdil M. Bagirov
dc.contributor.authorNapsu Karmitsa
dc.date.accessioned2022-10-28T12:26:44Z
dc.date.available2022-10-28T12:26:44Z
dc.identifier.urihttps://www.utupub.fi/handle/10024/159536
dc.description.abstractThe aim of this paper is to design an algorithm based on nonsmooth optimization techniques to solve the minimum sum-of-squares clustering problems in very large data sets. First, the clustering problem is formulated as a nonsmooth optimization problem. Then the limited memory bundle method [Haarala et al., 2007] is modified and combined with an incremental approach to design a new clustering algorithm. The algorithm is evaluated using real world data sets with both the large number of attributes and the large number of data points. It is also compared with some other optimization based clustering algorithms. The numerical results demonstrate the efficiency of the proposed algorithm for clustering in very large data sets.
dc.language.isoen
dc.publisherELSEVIER SCI LTD
dc.titleClustering in large data sets with the limited memory bundle method
dc.identifier.urnURN:NBN:fi-fe2021042719681
dc.relation.volume83
dc.contributor.organizationfi=sovellettu matematiikka|en=Applied Mathematics|
dc.contributor.organization-code2606102
dc.converis.publication-id35725660
dc.converis.urlhttps://research.utu.fi/converis/portal/Publication/35725660
dc.format.pagerange259
dc.format.pagerange245
dc.identifier.eissn1873-5142
dc.identifier.jour-issn0031-3203
dc.okm.affiliatedauthorKarmitsa, Napsu
dc.okm.discipline111 Matematiikkafi_FI
dc.okm.discipline111 Mathematicsen_GB
dc.okm.internationalcopublicationinternational co-publication
dc.okm.internationalityInternational publication
dc.okm.typeJournal article
dc.publisher.countryBritanniafi_FI
dc.publisher.countryUnited Kingdomen_GB
dc.publisher.country-codeGB
dc.relation.doi10.1016/j.patcog.2018.05.028
dc.relation.ispartofjournalPattern Recognition
dc.year.issued2018


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot